Constructing Elimination Trees for Sparse Unsymmetric Matrices

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Parallel Algorithm for Gaussian Elimination of Sparse Unsymmetric Matrices

We describe a new algorithm for Gaussian Elimination suitable for general (unsymmetric and possibly singular) sparse matrices of any entry type, which has a natural parallel and distributed-memory formulation but degrades gracefully to sequential execution. We present a sample MPI implementation of a program computing the rank of a sparse integer matrix using the proposed algorithm. Some prelim...

متن کامل

Partitioning Rectangular and Structurally Unsymmetric Sparse Matrices for Parallel Processing

A common operation in scientific computing is the multiplication of a sparse, rectangular, or structurally unsymmetric matrix and a vector. In many applications the matrix-transposevector product is also required. This paper addresses the efficient parallelization of these operations. We show that the problem can be expressed in terms of partitioning bipartite graphs. We then introduce several ...

متن کامل

A two-level sparse approximate inverse preconditioner for unsymmetric matrices

Sparse approximate inverse (SPAI) preconditioners are effective in accelerating iterative solutions of a large class of unsymmetric linear systems and their inherent parallelism has been widely explored. The effectiveness of SPAI relies on the assumption of the unknown true inverse admitting a sparse approximation. Furthermore, for the usual right SPAI, one must restrict the number of non-zeros...

متن کامل

Improved Symbolic and Numerical Factorization Algorithms for Unsymmetric Sparse Matrices

We present algorithms for the symbolic and numerical factorization phases in the direct solution of sparse unsymmetric systems of linear equations. We have modified a classical symbolic factorization algorithm for unsymmetric matrices to inexpensively compute minimal elimination structures. We give an efficient algorithm to compute a near-minimal data-dependency graph for unsymmetric multifront...

متن کامل

Reordering sparse matrices for parallel elimination

We consider the problem of finding equivalent reorderings of a sparse matrix so that the reordered matrix is suitable for parallel Ganssian elimination. The elimination tree structure is used as our parallel model. We show that the reordering scheme by Jess and Kees generates an elimination tree with minimum height among all such trees from the class of equivalent reorderings. A new height-redu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Matrix Analysis and Applications

سال: 2013

ISSN: 0895-4798,1095-7162

DOI: 10.1137/110825443